Quasi-Orthogonality and Quasi-Projections

نویسندگان

  • Michael Unser
  • Charles K. Chui
چکیده

Our main concern in this paper is the design of simplified filtering procedures for the quasi-optimal approximation of functions in subspaces of L2 generated from the translates of a function φ(x). Examples of signal representations that fall into this framework are Schoenberg’s polynomial splines of degree n, and the various multiresolution spaces associated with the wavelet transform. After a brief review of the relation between the order of approximation of the representation and the concept of quasi-interpolation (Strang–Fix conditions), we investigate the implication of these conditions on the various basis functions and their duals (vanishing moment and quasi-interpolation properties). We then introduce the notion of quasi-duality and show how to construct quasiorthogonal and quasi-dual basis functions that are much shorter than their exact counterparts. We also consider the corresponding quasi-orthogonal projection operator at sampling step h and derive asymptotic error formulas and bounds that are essentially the same as those associated with the exact least-squares solution. Finally, we use the idea of a perfect reproduction of polynomials of degree n to construct short kernel quasi-deconvolution filters that provide a well-behaved approximation of an oblique projection operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New polynomial preserving operators on simplices: direct results

A new class of differential operators on the simplex is introduced, which define weighted Sobolev norms andwhose eigenfunctions are orthogonal polynomialswith respect to Jacobiweights. These operators appear naturally in the study of quasi-interpolants which are intermediate between Bernstein– Durrmeyer operators and orthogonal projections on polynomial subspaces. The quasi-interpolants satisfy...

متن کامل

On semi weak factorization structures

In this article the notions of semi weak orthogonality and semi weak factorization structure in a category $mathcal X$ are introduced. Then the relationship between semi weak factorization structures and quasi right (left) and weak factorization structures is given. The main result is a characterization of semi weak orthogonality, factorization of morphisms, and semi weak factorization structur...

متن کامل

Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions

Consider the Laplacian in a bounded domain in Rd with general (mixed) homogeneous boundary conditions. We prove that its eigenfunctions are ‘quasi-orthogonal’ on the boundary with respect to a certain norm. Boundary orthogonality is proved asymptotically within a narrow eigenvalue window of width o(E1/2) centered about E, as E → ∞. For the special case of Dirichlet boundary conditions, the norm...

متن کامل

Finite-volume transport on various cubed-sphere grids

The performance of a multidimensional finite-volume transport scheme is evaluated on the cubed-sphere geometry. Advection tests with prescribed winds are used to evaluate a variety of cubed-sphere projections and grid modifications including the gnomonic and conformal mappings, as well as two numerically generated grids by an elliptic solver and spring dynamics. We explore the impact of grid no...

متن کامل

Orthogonality and asymptotics of Pseudo-Jacobi polynomials for non-classical parameters

The family of general Jacobi polynomials P (α,β) n where α, β ∈ C can be characterised by complex (nonhermitian) orthogonality relations (cf. [15]). The special subclass of Jacobi polynomials P (α,β) n where α, β ∈ R are classical and the real orthogonality, quasi-orthogonality as well as related properties, such as the behaviour of the n real zeros, have been well studied. There is another spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996